Write the following as product of trigonometric ratios?
(1) #cos3phi-cos4phi-cos5phi+cos6phi#
(2) #sin2alpha+sin4alpha+sin6alpha#
(3) #sin5phi-sin6phi-sin7phi+sin8phi#
(4) #sin4beta-2cos^2(2beta)+1#
(1)
(2)
(3)
(4)
1 Answer
(1)
(2)
(3)
(4)
Explanation:
(1)
=
#(cos6phi-cos5phi)-(cos4phi-cos3phi)#
using
#2sin((11phi)/2)sin(phi/2)-2sin((7phi)/2)sin(phi/2)# =
#2sin(phi/2){sin((11phi)/2)-sin((7phi)/2)}#
using
=
#2sin(phi/2){2cos((18phi)/4)sin((4phi)/4)}# =
#color(blue)(4sin(phi/2)sinphicos((9phi)/2)#
(2)
=
#sin6alpha+sin2alpha+sin4alpha#
Using
=
#2sin3alphacos3alpha+2sin3alphacosalpha# =
#2sin3alpha(cos3alpha+cosalpha)#
Using
#2sin3alpha(2cos2alphacosalpha)# =
#color(blue)(4cosalphacos2alphasin3alpha)#
(3)
=
#sin8phi-sin7phi-(sin6phi-sin5phi)# =
#2cos((15phi)/2)sin(phi/2)-2cos((11phi)/2)sin(phi/2)# =
#2sin(phi/2){cos((15phi)/2)-cos((11phi)/2)}# =
#2sin(phi/2){2sin((15phi+11phi)/4)sin((15phi-11phi)/4)}# =
#color(blue)(4sin(phi/2)sinphisin((13phi)/2))#
(4)
=
#sin4beta-(2cos^2(2beta)-1)#
Using
#sin4beta-cos4beta# and as#sin(pi/2-A)=cosA# this is=
#sin4beta-sin(pi/2-4beta)# using identity in (1)=
#2cos((4beta+pi/2-4beta)/2)sin((4beta-pi/2+4beta)/2)# =
#2cos(pi/4)sin(4beta-pi/4)# =
#2/sqrt2sin(4beta-pi/4)# =
#color(blue)(sqrt2sin(4beta-pi/4))#