Write the following as product of trigonometric ratios?

(1) #cos3phi-cos4phi-cos5phi+cos6phi#
(2) #sin2alpha+sin4alpha+sin6alpha#
(3) #sin5phi-sin6phi-sin7phi+sin8phi#
(4) #sin4beta-2cos^2(2beta)+1#

1 Answer

(1) #4sin(phi/2)sinphicos((9phi)/2)#
(2) #4cosalphacos2alphasin3alpha#
(3) #4sin(phi/2)sinphisin((13phi)/2)#
(4) #sqrt2sin(4beta-pi/4)#

Explanation:

(1) #cos3phi-cos4phi-cos5phi+cos6phi#

= #(cos6phi-cos5phi)-(cos4phi-cos3phi)#

using #cosA-cosB=2sin((A+B)/2)sin((A-B)/2)# the above is equal to

#2sin((11phi)/2)sin(phi/2)-2sin((7phi)/2)sin(phi/2)#

= #2sin(phi/2){sin((11phi)/2)-sin((7phi)/2)}#

using #sinA-sinB=2cos((A+B)/2)sin((A-B)/2)# the above is equal to

= #2sin(phi/2){2cos((18phi)/4)sin((4phi)/4)}#

= #color(blue)(4sin(phi/2)sinphicos((9phi)/2)#

(2) #sin2alpha+sin4alpha+sin6alpha#

= #sin6alpha+sin2alpha+sin4alpha#

Using #sin2A=2sinAcosA# and #sinA+sinB=2sin((A+B)/2)cos((A-B)/2)#

= #2sin3alphacos3alpha+2sin3alphacosalpha#

= #2sin3alpha(cos3alpha+cosalpha)#

Using #cosA+cosB=2cos((A+B)/2)cos((A-B)/2)#, this is equal to

#2sin3alpha(2cos2alphacosalpha)#

= #color(blue)(4cosalphacos2alphasin3alpha)#

(3) #sin5phi-sin6phi-sin7phi+sin8phi# - use identities in (1) above

= #sin8phi-sin7phi-(sin6phi-sin5phi)#

= #2cos((15phi)/2)sin(phi/2)-2cos((11phi)/2)sin(phi/2)#

= #2sin(phi/2){cos((15phi)/2)-cos((11phi)/2)}#

= #2sin(phi/2){2sin((15phi+11phi)/4)sin((15phi-11phi)/4)}#

= #color(blue)(4sin(phi/2)sinphisin((13phi)/2))#

(4) #sin4beta-2cos^2(2beta)+1#

= #sin4beta-(2cos^2(2beta)-1)#

Using #sin2A=2sinAcosA# and #cos2A=2cos^2A-1#, this is equal to

#sin4beta-cos4beta# and as #sin(pi/2-A)=cosA# this is

= #sin4beta-sin(pi/2-4beta)# using identity in (1)

= #2cos((4beta+pi/2-4beta)/2)sin((4beta-pi/2+4beta)/2)#

= #2cos(pi/4)sin(4beta-pi/4)#

= #2/sqrt2sin(4beta-pi/4)#

= #color(blue)(sqrt2sin(4beta-pi/4))#