If #x^2-kx+sin^(-1)(sin4) > 0# for all real #x#, then what is the range of #k#?

1 Answer
Jul 3, 2017

#x^2-kx+sin^(-1)(sin4) > 0# for all real #x# if #kin(-4,4)#

Explanation:

As #sin^(-1)(sin4)=4#,

#x^2-kx+sin^(-1)(sin4)# can be written as

#x^2-kx+4#

or #x^2-2xxk/2x+(k/2)^2-(k/2)^2+4#

= #(x-k/2)^2+4-k^2/4#

Hence, as #(x-k/2)^2# is always greater than or equal to #0#

#x^2-kx+4 >0# if #4-k^2/4 > 0#

or #16-k^2 > 0#

or #(4-k)(4+k) > 0#

and this will be so if #kin(-4,4)#