Question #84ae9 Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Nam D. Jan 2, 2018 #x^8-4x^7-2x^6+20x^5+x^4-40x^3-8x^2+32x+16# Explanation: First, rearrange #(2+x-x^2)^4# into #(-x^2+x+2)^4#. Then we have: #(-x^2+x+2)^4=(-x^2+x+2)(-x^2+x+2)(-x^2+x+2)(-x^2+x+2)# #=(x^4-2x^3-3x^2+4x+4)(-x^2+x+2)(-x^2+x+2)# #=(-x^6+3x^5+3x^4-11x^3-6x^2+12x+8)(-x^2+x+2)# #=x^8-4x^7-2x^6+20x^5+x^4-40x^3-8x^2+32x+16# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 1064 views around the world You can reuse this answer Creative Commons License