Question #52e7f

1 Answer
Jun 17, 2016
  1. See explanation

Explanation:

Using the appropriate #color(blue)"Addition Formulae"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(cos(A±B)=cosAcosB∓sinAsinB)color(white)(a/a)|)))#

hence cos(x-y)=cosxcosy+sinxsiny

We are given sinx and cosy but require to find cosx and siny to evaluate the right side of the expansion.

Using the following sketches (not to scale)

enter image source here

#sinx=3/5 "allows opposite and hypotenuse to be completed"#

Use #color(blue)"Pythagoras' theorem"# to find adjacent = 4 or recognise the well known '3,4,5' triangle.

#sinx=3/5rArrcosx=4/5#
#"------------------------------------------------------"#

Similarly #cosy=5/13# allows adjacent and hypotenuse to be completed. Using Pythagoras or recognising '5,12,13' triangle to obtain opposite = 12.

#cosy=5/13rArrsiny=12/13#
#"-----------------------------------------------------------"#

We now have all the required ratios to complete the expansion.

#cos(x-y)=cosxcosy+sinxsiny#

#=(4/5xx5/13)+(3/5xx12/13)#

#=20/65+36/65=56/65" thus shown"#