Question #abd69

2 Answers
Jun 21, 2016

#(72^@26 + k180)#
#(220^@ + k180)#

Explanation:

Apply these identities, calling #tan (x/2) = t#
#sin x = (2t)/(1 + t^2) #
#cos x = (1 - t^2)/(1 + t^2)#
2sin x - 3cos x = 1
Replace sin x and cos x by the above identities, we get:
#4t - 3 + 3t^2 = 1 + t^2#
#2t^2 + 4t - 4 = 0#
#t^2 + 2t - 2 = 0#.
Solve this quadratic equation for t, using the improved quadratic formula (Google, Yahoo Search);
#D = d^2 = b^2 - 4ac = 4 + 8 = 12# --> #d = +- 2sqrt3#
There are 2 real roots:
#t = -b/(2a) +- d/(2a) = -2/2 +- (2sqrt3)/2 = -1 +- sqrt3#
#t1 = -1 -sqrt3 = - 2.73#
#t2 = -1 + sqrt3 = 0.73#
a. #t1 = tan (x/2) = -2.73# --> #x/2 = - 69^@88# and #x/2 = -69.88 + 180 = 110^@12# --> x = 220.24 + k180
b. t2 = 0.73 --> #x/2 = 36.13# and #x/2 = 36.13 + 180 = 216.13# -->
#x = 72.26 + k180#

Jun 21, 2016

Using identities of fractional angle

#sinx=(2tan(x/2))/(1+tan^2(x/2))#

and
#cosx=(1-tan^2(x/2))/(1+tan^2(x/2))#

Given equation becomes

#2sinx-3cosx=1#

#=(4tan(x/2))/(1+tan^2(x/2))-3((1-tan^2(x/2)))/(1+tan^2(x/2))=1#

putting #tan(x/2)=t# we get

#=>(4t)/(1+t^2)-(3(1-t^2))/(1+t^2)=1#

#=>4t-3+3t^2=1+t^2#

#=>3t^2-t^2+4t-3-1=0#

#=>2t^2+4t-4=0#

#=>t^2+2t-2=0#

#=>t^2+2t+1=3#

#=>(t+1)^2=3#

#=>t+1=+-sqrt3#

#=>t=+-sqrt3-1#

when #t =sqrt3-1#

#tan(x/2)=sqrt3-1#

#:.x=2xxtan^-1(sqrt3-1)=2*36.2^@=72.4^@#

Or,#x=(180+72.4)=252.4^@#

Again when

#tan(x/2)=-sqrt3-1#

#=>x=2xxtan^-1(-sqrt3-1)#

#=>x=2*110.1^@=220.2^@#