Using the identity #cos(A+B) = cosAcosB - sinAsinB#, how do you prove that #1/4cos(3A) = cos^3A - 3/4cosA#?

3 Answers
Jun 12, 2016

I'm going to work from the right hand side. For #cos3A#, we know that:

#color(green)(cos3A = cos(A + 2A) = cosAcolor(highlight)(cos2A) - sinAcolor(highlight)(sin2A)).#

Next, recall that:

  • #color(highlight)(sin2A) = sinAcosA + cosAsinA = color(highlight)(2sinAcosA)#
  • #color(highlight)(cos2A) = cosAcosA - sinAsinA = color(highlight)(cos^2A - sin^2A)#

So, we now have:

#cos3A = cosA(color(highlight)(cos^2A - sin^2A)) - sinA(color(highlight)(2sinAcosA))#

#= cos^3A - sin^2AcosA - 2sin^2AcosA#

#= cos^3A - 3color(red)(sin^2)AcosA#

What I'm shooting for at this point is the result you get on the left hand side when you multiply the right hand side by #4#: #color(purple)(4cos^3A - 3cosA)#. That requires all functions to be #cos# here.

So, we have to reference the identity that you definitely know: #color(red)(sin^2A + cos^2A = 1)#. This gives us:

#= cos^3A - 3(color(red)(1 - cos^2A))cosA#

#= cos^3A - 3(cosA - cos^3A)#

#= cos^3A - 3cosA + 3cos^3A#

#= color(purple)(4cos^3A - 3cosA)#

Almost there! Finally, since this was equal to #cos3A#, we have to divide by #4# to get:

#1/4cos3A = 1/4*[4cos^3A - 3cosA]#

#=> color(blue)(1/4cos3A = cos^3A - 3/4cosA)#

Jun 13, 2016

Using only the given identity of #cos(A+B)# the other given identity can be proved as follows.

Explanation:

General Discussion

The identity to be assumed is

#cos(A+B)=cosAcosB-sinAsinB...(1)#

As this is valid for all real values of A and B , we can put convenient values to get different identities as follows.

Method - I( A Tricky one)

Putting #B= -B# in equation (1)

#cos(A-B)=cosAcos(-B)-sinAsin(-B)#

#=>cos(A-B)=cosAcosB+sinAsinB…(1.1)#

Adding (1) and (1.1) we get

#cos(A+B)+cos(A-B)=2cosAcosB…(1.2)#

Now Putting #B=2A# in (1.2)

#cos(A+2A)+cos(A-2A)=2cosAcos2A#

#cos3A+cosA=2cosAcos2A#

#cos3A=cosA(2cos2A-1)…(1.3)#

Putting #B=A# in (1.2)

#cos(A+A)+cos(A-A)=2cosAcosA#

#=>cos2A+cos0=2cos^2A#

#cos2A=2cos^2A-1…(1.4)#

Finally combining (1.4) with (1.3) we get

#cos3A=cosA(2(2cos^2A-1)-1)#

#=>cos3A=4cos^3A-3cosA#

Re-arrenging and deviding bothsides by 4
#cos^3A-3/4cosA=1/4cos3A#
Proved

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Method-II (A long one)

Putting #B=A # in equation(1)

#cos(A+A)=cosAcosA-sinAsinA#

#cos2A=cos^2A-sin^2A....(2)#

Putting# B=90+A #in equation(1)

#cos(A+90+A)=cosAcos(90+A)-sinAsin(90+A)#

#-sin2A=-sinAcosA-sinAcosA#

#=>sin2A=2sinAcosA...(3)#

Putting #B=-A# in equation(1)

#cos(A-A)=cosAcos(-A)-sinAsin(-A)#

#=>cos^2A+sin^2A=1...(4)#

Now finally putting #B=2A # in equation (1)

#cos(A+2A)=cosAcos2A-sinAsin2A#

inserting the relation (3)

#cos3A=cosAcos2A-2sinAsinAcosA#

#=cosA(cos2A-2sin^2A)#

Inserting relation (2)

#cos3A=cosA(cos^2A-sin^2A-2sin^2A)#

#=cosA(cos^2A-3sin^2A)#

#=cosA(4cos^2A-3cos^2A-3sin^2A)#

#=cosA(4cos^2A-3(cos^2A+sin^2A)#

#=cosA(4cos^2A-3*1)" " relation(4)#

#cos3A=4cos^3A-3cosA#

Re-arrenging and deviding bothsides by 4

#:.cos^3A-3/4cosA=1/4cos3A#

Proved

Jun 14, 2016

RHS is
#1/4cos(3A) = 1/4cos(2A+A)#
Using the given expression
#=> 1/4(cos (2A)cos(A) - sin(2A)sinA)#

  1. Substituting the known expression for #sin (2A)=2sinA cos A#
  2. Using given expression again for
    #cos(2A)=cos (A+A)=cos^2A-sin^2A#
  3. and writing all terms in #"cosine"# using #sin^2A+cos^2A=1# we obtain
    #1/4((2cos^2A-1)cosA - 2sin^2AcosA)#

#=> 1/4(2cos^3A - cosA - 2(1-cos^2A)cosA)#
#= 1/4(2cos^3A - cosA - 2cosA + 2cos^3A)#
#=>1/4( 4cos^3A - 3cosA)#
#=> cos^3A - 3/4 cosA=#LHS