The Empirical Gas Law relationships are:

**Boyles' Law:** #"Pressure" prop=(1/"Volume")#; mass & Temperture remain constant.

=> #"P"prop"(1/V)"# => #P=k(1/V)# => #k = (PV)#

=> #k_1=k_2# => #P_1V1 = P_2V_2#

**Charles' Law:** #"Volume "prop" f(Temperature)"#; Pressure & mass remain constant.

=> #VpropT# => #V=kT# => #k = (V/T)#

=> #k_1=k_2# => #(V_1/T_1)=(V_2/T_2)#

**Gay-Lussac Law:** #"Pressure "prop" f(Temperature)"#; mass & Volume remain constant.

=> #PpropT# => #P=kT# => #k = (P/T)#

=> #k_1=k_2# => #(P_1/T_1)=(P_2/T_2)#

**Volume-Mass Law** : #"Volume "prop" f(mass)"#; Pressure & Temperature remain constant.

=> #Vpropn# => #V=kn# => #k = (V/n)#; n = moles

=> #k_1=k_2# => #(V_1/n_1)=(V_2/n_2)#

**Pressure-Mass Law:** #"Pressure "prop" f(mass)"#; Pressure & Temperature remain constant.

=> #Ppropn# => #P=kn# => #k = (P/n)#; n = moles

=> #k_1=k_2# => #(P_1/n_1)=(P_2/n_2)#

**Combined Gas Law**

=>#PVpropnT# => #PV=knT# => #k = ((PV)/(nT))#

=> #k_1=k_2# => #((P_1V_1)/(n_1T_1)) =((P_2V_2)/(n_2T_2))#

**Ideal Gas Law** => Assumes one of the P,V,n,T condition sets of the Combined Gas Law is at Standard Temperature - Pressure conditions (STP). The other set of P,V,n,T conditions are Non-Standard Conditions.

#STP# => #(P,V, n, T)# #(1.0Atm, 22.4L, 1"mole", 273K)#

=> #((P_1V_1)/(n_1T_1)) = ((1Atm)(22.4L))/((1mol)(273K))# = #0.08206((L)(Atm))/((mol)(K))#

= #"Universal" "Gas" "Constant" (R)#

Therefore, substituting 'R' into Combined Gas Law

=> #R = ((PV)/(nT))# => #PV = nRT#

Note:

One can also use the same logic for deriving relationships for ...

**Henry's Law of Gas Solubility** => #" Solubility of a gas" prop "Applied Pressure#

**Graham's Law of Gas Effusion Rates** => #"Effusion Rate" prop (1/sqrt(mol wt))#