Question #cabf2

2 Answers
Nov 19, 2016

I found two real solutions:

Explanation:

I would try rearranging it as:
#x^2=4sqrt(x)#
square both sides:
#x^4=16x#
#x^4-16x=0#
#x(x^3-16)=0#
so we have:
#x=0#
and
#x^3-16=0#
#x^3=16#

solutions:
#x_1=0#
#x_2=root(3)(16)#

#x_3# and #x_4# should be two imaginary solutions considering that the graph of #x^3-16# has only one real solution (#x# intercept):
graph{x^3-16 [-105.4, 105.4, -52.7, 52.8]}

Nov 19, 2016

#x=2.52#

Explanation:

#x^2-4sqrtx=0#

#x^2=4sqrtx#

#x^2/sqrtx=x^(3/2)=4#

#x^(3/2)=(sqrtx)^3=4#

#sqrtx=root(3)4#

#x=(root(3)4)^2=2.52#