How do we prove that #((n),(k))=sum_(l=k)^n((l-1),(k-1))#?

1 Answer
Dec 27, 2016

Use the identity #((n),(k))=((n-1),(k))+((n-1),(k-1))#. See below for details.

Explanation:

Recall the identity #((n),(k))=((n-1),(k))+((n-1),(k-1))#

To prove this as #((n),(k))=(n!)/(k!(n-k)!)#

=#(nxx(n-1)!)/(kxx(k-1)!(n-k)(n-k-1)!)#

=#((n-1)!)/((k-1)!(n-k-1)!)[n/(k(n-k))]#

=#((n-1)!)/((k-1)!(n-k-1)!)[((n-k)+k)/(k(n-k))]#

=#((n-1)!)/((k-1)!(n-k-1)!)[1/k+1/(n-k)]#

=#((n-1)!)/(k(k-1)!(n-k-1)!)+((n-1)!)/(k(k-1)!(n-k)(n-k-1)!)#

=#((n-1)!)/(k!(n-k-1)!)+((n-1)!)/(k!(n-k)!)=((n-1),(k))+((n-1),(k-1))#

Hence #((n),(k))=((n-1),(k))+((n-1),(k-1))#, bur from this we get

#((n-1),(k-1))=((n-2),(k-1))+((n-2),(k-2))#

Hence #((n),(k))=((n-1),(k))+((n-2),(k-1))+((n-2),(k-2))#

Now similarly split #((n-2),(k-2))# into

#((n-2),(k-2))=((n-3),(k-2))+((n-3),(k-3))# and

#((n),(k))=((n-1),(k))+((n-2),(k-1))+((n-3),(k-2))+((n-3),(k-3))#

Going on similarly, we get

#((n),(k))=sum_(l=k)^n((l-1),(k-1))#