Calculate the area for the trapeze #PQRS# ? (See question)

1 Answer
Dec 10, 2016

#15# area units.

Explanation:

Given two conics

#C_1(x_1,y_1)=x_1^2+y_1^2-2=0# and
#C_2(x_2,y_2)=y_2^2-8x_2=0#

The tangent space to those conics is

#m_1 = (dy_1)/(dx_1) = -x_1/y_1#
#m_2 = (dy_2)/(dx_2) = 4/y_2#

the tangency condition reads

#{(y_2-y_1=m_1(x_2-x_1)),(y_1-y_2=m_2(x_1-x_2)):}#

Solving now

#{(x_1^2+y_1^2-2=0),(y_2^2-8x_2=0),(y_2-y_1=m_1(x_2-x_1)),(y_1-y_2=m_2(x_1-x_2)):}#

for #x_1,x_2,y_1,y_2# we obtain

#((Q,(-1,-1)),(P,(-1,1)),(S,(2,-4)),(R,(2,4)))#

Attached a plot focusing the main elements

The area is #(3(2+8))/2=15#.

enter image source here