Question #e1ae5

1 Answer
Dec 10, 2016

#int_0^(pi/4)16sin^4(x)cos^2(x)dx=pi/4-1/3#

Explanation:

First, let's find the indefinite integral #int16sin^4(x)cos^2(x)dx#. To do so, we will make use of the formulas

  • #sin^2(x) = (1-cos(2x))/2#
  • #sin(2x) = 2sin(x)cos(x)#

#int16sin^4(x)cos^2(x)dx = 16intsin^2(x)(sin(x)cos(x))^2dx#

#=16intsin^2(x)(1/2sin(2x))^2dx#

#=4intsin^2(x)sin^2(2x)dx#

#=4int(1-cos(2x))/2sin^2(2x)dx#

#=2int(sin^2(2x)-sin^2(2x)cos(2x))dx#

#=2intsin^2(2x)dx - 2intsin^2(2x)cos(2x)dx#

Let's evaluate these integrals separately.


#2intsin^2(2x)dx = 2int(1-cos(4x))/2dx#

#=intdx - intcos(4x)dx#

#=x-sin(4x)/4+C#


For the second integral, we make the substitution

#u = sin(2x) => du = 2cos(2x)dx#

Then

#2intsin^2(2x)cos(2x)dx = intu^2du#

#=u^3/3+C#

#=sin^3(2x)/3+C#


Putting the above together, we get

#int16sin^4(x)cos^2(x)dx#

#= 2intsin^2(2x)dx - 2intsin^2(2x)cos(2x)dx#

#=x-sin(4x)/4-sin^3(2x)/3+C#

We can now evaluate the definite integral.

#int_0^(pi/4)16sin^4(x)cos^2(x)dx = [x-sin(4x)/4-sin^3(2x)/3]_0^(pi/4)#

#=(pi/4-sin(pi)/4-sin^3(pi/2)/3)#

#-(0-sin(0)/4-sin^3(0)/3)#

#=pi/4-0/4-1/3-0+0+0#

#=pi/4-1/3#