Question #0310e

1 Answer
Jan 5, 2017

Answer:

See the full process for factoring this expression below

Explanation:

We can rewrite this expression as:

#(5x^3 + 15x^2 + 20x)/(5x)#

We can first factor #color(red)(5x)# from the numerator.

#((color(red)(5x) xx x^2) + (color(red)(5x) xx 3x) + (color(red)(5x) xx 4))/(5x)#

#(color(red)(5x)(x^2 + 3x + 4))/(5x)#

We can now eliminate the #5x# terms through cancellation.

#(cancel(color(red)(5x))(x^2 + 3x + 4))/color(red)(cancel(color(black)(5x)))#

#x^2 + 3x + 4#