What is #sqrt(2x^3)*sqrt(6x^2)*sqrt(10x)# in simplified form?
1 Answer
Explanation:
Note that if
#sqrt(a)sqrt(b) = sqrt(ab)#
By extension, we find if
#sqrt(a)sqrt(b)sqrt(c) = sqrt(ab)sqrt(c) = sqrt(abc)#
Note also that if
#sqrt(a^2) = a#
In our example, we will assume
So in our example:
#sqrt(2x^3)*sqrt(6x^2)*sqrt(10x) = sqrt(2x^3*6x^2*10x)#
#color(white)(sqrt(2x^3)*sqrt(6x^2)*sqrt(10x)) = sqrt(2x^3*2x^3*30)#
#color(white)(sqrt(2x^3)*sqrt(6x^2)*sqrt(10x)) = sqrt((2x^3)^2)sqrt(30)#
#color(white)(sqrt(2x^3)*sqrt(6x^2)*sqrt(10x)) = 2x^3 sqrt(30)#
Footnote
It seems to be a common error to assume that:
#sqrt(x^2) = x#
This does hold, but only if
If we want to cover the case
#sqrt(x^2) = abs(x)#
In the given example, we can deduce that the case