Solve the equation # sinx \ cosx = sqrt(2)/4 # for #0 le x le 2pi #?
1 Answer
Feb 11, 2017
# x = pi/8, (3pi)/8, (9pi)/8, (11pi)/8 #
Explanation:
We want to solve:
# sinx \ cosx = sqrt(2)/4 #
We can simplify the expression using the identity;
# sin 2A -= 2sinA \ cos A #
Which gives us:
# \ \ 1/2sin2x = sqrt(2)/4 #
# :. sin2x = sqrt(2)/2 #
If
So the solutions within the range
# \ \ \ \ \ 2x = pi/4, pi-pi/4, 2pi+pi/4, 3pi-pi/4 #
# :. 2x = pi/4, (3pi)/4, (9pi)/4, (11pi)/4 #
# :. \ \ x = pi/8, (3pi)/8, (9pi)/8, (11pi)/8 #