#Cos(2θ) + 34 sin2 θ = 25#
#=>1/sqrt(1^2+34^2)Cos(2θ) + 34/sqrt(1^2+34^2) sin2 θ = 25/sqrt(1^2+34^2)#
Let
#cosalpha=1/sqrt(1^2+34^2) #
#sinalpha=34/sqrt(1^2+34^2) #
and
#cos phi =25/sqrt(1^2+34^2)=> phi=cos^-1(25/sqrt(1^2+34^2)) =0.24pi#
So # tanalpha=34=>alpha = tan^-1(34)=0.49pi#
The given equation becomes
#cos2thetacosalpha+sin2thetasinalpha=coa phi#
#=>cos(2theta-alpha)=cosphi#
#=>cos(2theta-0.49pi)=cos(0.24pi)=cos (2pi-0.24pi)#
so
#=>2theta=(0.24+0.49)pi#
#=>theta=(0..365)pi#
Again
#=>2theta=(2-0.24+0.49)pi#
#=>theta=1.125pi#
Further taking
#cos(2theta-0.49pi)=cos(0.24pi)=cos (2pi+0.24pi)#
#=>2theta=(2+0.24+0.49)pi#
#=>theta=1.365pi#