Question #d8ccb
1 Answer
Explanation:
#I=int(xe^arctanx)/((1+x^2)sqrt(1+x^2))dx#
Let
#I=int(tant(e^t))/sqrt(1+tan^2t)dt#
Recall that
#I=inte^t tant/sectdt=inte^tsintdt#
This is a tricky integral which is solved with two iterations of integration by parts. Start with:
#{(u=e^t,=>,du=e^tdt),(dv=sintdt,=>,v=-cost):}#
#I=-e^tcost+inte^tcostdt#
Now let:
#{(u=e^t,=>,du=e^tdt),(dv=costdt,=>,v=sint):}#
So:
#I=-e^tcost+e^tsint-inte^tsintdt#
The original integral
#2I=e^tsint-e^tcost#
#I=1/2e^t(sint-cost)#
Substituting back in with
#I=1/2e^arctanx(sin(arctanx)-cos(arctanx))#
Note that the angle
Then,
#I=1/2e^arctanx(x/sqrt(1+x^2)-1/sqrt(1+x^2))#
#I=(e^arctanx(x-1))/(2sqrt(1+x^2))+C#