Question #89694 Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Andrea S. Apr 14, 2017 #int cosxsqrt(1+cos2x)dx =(x +sinxcosx)/sqrt2 + C# Explanation: Use the trigonometric identity: #cos^2x = (1+cos2x)/2# so: #cosxsqrt(1+cos2x) = cosx sqrt(2cos^2x) =sqrt2cos^2x = (1+cos2x)/sqrt2# and: #int cosxsqrt(1+cos2x)dx = int (1+cos2x)/sqrt2dx# #int cosxsqrt(1+cos2x)dx = 1/sqrt2 int dx +1/(2sqrt2) int cos2xd(2x)# #int cosxsqrt(1+cos2x)dx = x/sqrt2 +(sin2x)/(2sqrt2) +C# #int cosxsqrt(1+cos2x)dx =(x +sinxcosx)/sqrt2 + C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1519 views around the world You can reuse this answer Creative Commons License