Find the angles of the triangle formed by vectors #vecP=5hati-3hatj+hatk#, #vecQ=-2hati+hatj+5hatk# and #vecR=9hati+5hatj+0hatk#?

1 Answer
May 30, 2017

The triangle formed is a right isoceles triangle and #m/_A=90^@#, #m/_B=m/_C=45^@#

Explanation:

Let the three vectors #vecP=5hati-3hatj+hatk#, #vecQ=-2hati+hatj+5hatk# and #vecR=9hati+5hatj+0hatk#, form a triangle with vertices #a#, #B# and #C# respectively.

Hence #|AB|=|vecQ-vecP|=|(-2-5)hati+(1-(-3))hatj+(5-1)hatk|#

= #|-7hati+4hatj+4hatk|=sqrt((-7)^2+4^2+4^2)=sqrt81=9#

#|BC|=|vecR-vecQ|=|(9-(-2))hati+(5-1)hatj+(0-5)hatk|#

= #|11hati+4hatj-5hatk|=sqrt(11^2+4^2+(-5)^2)=sqrt162=9sqrt2#

and #|CA|=|vecR-vecP|=|(9-5)hati+(5-(-3))hatj+(0-1)hatk|#

= #|4hati+8hatj-1hatk|=sqrt(4^2+8^2+(-1)^2)=sqrt81=9#

It is apparent that #AB^2+CA^2=BC^2#, where #AB=CA#

Hence the triangle formed is a right isoceles triangle and #m/_A=90^@#, #m/_B=m/_C=45^@#