How do you simplify #sin((2pi)/7)+sin((4pi)/7)+sin((8pi)/7)# ?

2 Answers
Jun 11, 2017

#sin((2pi)/7)+sin((4pi)/7)+sin((8pi)/7)=4sin((2pi)/7)sin((4pi)/7)sin(pi/7)#

Explanation:

#sin((2pi)/7)+sin((4pi)/7)+sin((8pi)/7)#

= #sin((8pi)/7)+sin((2pi)/7)+sin((4pi)/7)#

= #2sin((8pi+2pi)/(2xx7))cos((8pi-2pi)/(2xx7))+sin((4pi)/7)#

= #2sin((5pi)/7)cos((3pi)/7)+2sin((2pi)/7)cos((2pi)/7)#

= #2sin(pi-(5pi)/7)cos((3pi)/7)+2sin((2pi)/7)cos((2pi)/7)#

= #2sin((2pi)/7)cos((3pi)/7)+2sin((2pi)/7)cos(pi-(5pi)/7)#

= #2sin((2pi)/7)[cos((3pi)/7)-cos((5pi)/7)]#

= #2sin((2pi)/7)[2sin((5pi+3pi)/(2xx7))sin((5pi-3pi)/(2xx7))]#

= #4sin((2pi)/7)sin((4pi)/7)sin(pi/7)#

Jun 11, 2017

#sin((2pi)/7)+sin((4pi)/7)+sin((8pi)/7) = sqrt(7)/2#

Explanation:

Let:

#alpha = cos ((2pi)/7) + i sin ((2pi)/7)#

Then:

#alpha^7 = cos (2pi) + i sin (2pi) = 1#

So:

#0 = alpha^7-1 = (alpha-1)(alpha^6+alpha^5+alpha^4+alpha^3+alpha^2+alpha+1)#

We find:

#(alpha+alpha^2+alpha^4)^2#

#= (alpha)^2+(alpha^2)^2+(alpha^4)^2+2(alphaalpha^2+alpha^2alpha^4+alpha^4alpha)#

#= alpha^2+alpha^4+alpha^8+2(alpha^3+alpha^6+alpha^5)#

#= alpha+alpha^2+alpha^4+2(alpha+alpha^2+alpha^3+alpha^4+alpha^5+alpha^6-alpha-alpha^2-alpha^4)#

#= alpha+alpha^2+alpha^4+2(-1-alpha-alpha^2-alpha^4)#

#= -(alpha+alpha^2+alpha^4)-2#

So #alpha+alpha^2+alpha^4# is a root of:

#t^2+t+2 = 0#

which we can solve by completing the square:

#0 = t^2+t+2#

#color(white)(0) = (t+1/2)^2+7/4#

#color(white)(0) = (t+1/2)^2-(sqrt(7)/2i)^2#

#color(white)(0) = ((t+1/2)-sqrt(7)/2i)((t+1/2)+sqrt(7)/2i)#

#color(white)(0) = (t+1/2-sqrt(7)/2i)(t+1/2+sqrt(7)/2i)#

So:

#alpha+alpha^2+alpha^4 = t = -1/2+-sqrt(7)/2i#

That is:

#cos((2pi)/7)+cos((4pi)/7)+cos((8pi)/7)+i(sin((2pi)/7)+sin((4pi)/7)+sin((8pi)/7)) = -1/2+-sqrt(7)/2i#

Equating imaginary parts:

#sin((2pi)/7)+sin((4pi)/7)+sin((8pi)/7) = +-sqrt(7)/2#

Which sign is correct?

Note that:

#sin((2pi)/7) > 0#

#sin((4pi)/7) > 0#

#sin(-(2pi)/7) < sin((-pi)/7) = sin((8pi)/7)#

Hence:

#sin((2pi)/7)+sin((4pi)/7)+sin((8pi)/7) > 0#

So:

#sin((2pi)/7)+sin((4pi)/7)+sin((8pi)/7) = sqrt(7)/2#