#((cos A + cos B)/(sin A - sin B))^m#+ #((sin A + sin B)/(cos A - cos B))^m=_#?

2 Answers
Jun 17, 2017

Please see below.

Explanation:

#((cos A + cos B)/(sin A - sin B))^m#+ #((sin A + sin B)/(cos A - cos B))^m#

= #((2cos((A+B)/2)cos((A-B)/2))/(2cos((A+B)/2)sin((A-B)/2)))^m+((2sin((A+B)/2)cos((A-B)/2))/(-2sin((A+B)/2)sin((A-B)/2)))^m#

= #(cot((A-B)/2))^m+(-cot((A-B)/2))^m#

= #(cot((A-B)/2))^m+(-1)^m(cot((A-B)/2))^m#

As when #m# is odd #(-1)^m=-1#, and we have #((cos A + cos B)/(sin A - sin B))^m#+ #((sin A + sin B)/(cos A - cos B))^m=0#

and when #m# is even #(-1)^m=1# and we have #((cos A + cos B)/(sin A - sin B))^m#+ #((sin A + sin B)/(cos A - cos B))^m=2cot^m((A-B)/2)#

Jun 17, 2017

See the Proof given in the Explanation.

Explanation:

We have, #(cosA+cosB)/(sinA-sinB)#

#={2cos((A+B)/2)cos((A-B)/2)}/{2cos((A+B)/2)sin((A-B)/2)},#

#:. (cosA+cosB)/(sinA-sinB) =cot((A-B)/2)=x, say, ......(1),# where,

#x=cot((A-B)/2).#

Likewise, #(sinA+sinB)/(cosA-cosB)=-cot((A-B)/2)=-x, ........(2).#

#:. {(cosA+cosB)/(sinA-sinB)}^m+{(sinA+sinB)/(cosA-cosB)}^m, m in NN,#

#=x^m+(-x)^m,#

#=x^m+(-1)^mx^m,#

#={(-1)^m+1}x^m,#

#={(-1)^m+1}cot^m((A-B)/2), m in NN.#

Case 1 : #m in NN, m" is odd."#

#:. (-1)^m+1=-1+1=0.#

# rArr {(cosA+cosB)/(sinA-sinB)}^m+{(sinA+sinB)/(cosA-cosB)}^m, m in NN, m" is odd",#

#={(-1)^m+1}cot^m((A-B)/2), m in NN, m" is odd,"#

#=0.#

Case 2 : #m in NN, m" is even."#

Here, #(-1)^m+1=1+1=2.#

# rArr {(cosA+cosB)/(sinA-sinB)}^m+{(sinA+sinB)/(cosA-cosB)}^m, m in NN, m" is even",#

#={(-1)^m+1}cot^m((A-B)/2), m in NN, m" is even,"#

#=2cot^m((A-B)/2).#

Hence, the Proof.

Enjoy Maths.!