#omega# is a cube root of unity. Show the following?
#(a+b+c)(a+bomega+comega^2)(a+bomega^2+comega) = a^3 + b^3 + c^3 - 3abc#
1 Answer
We are given that
# z^3 = 1 #
# :. z^3 - 1 = 0 #
# :. (z-1)(z^2+z+1) = 0 #
From which can get the actual values of the roots:
# z =1,(-1+-sqrt(3)i)/2 #
Thus some easily verifiable properties are that:
- The roots can be denoted by
#1, omega, omega^2# where#omega# is any of the complex roots. #1+omega+omega^2=0 => omega+omega^2=-1# .#omega^3=1 => omega^4=omega# . etc
So now, let us consider the RHS of the given expression:
# RHS = (a+b+c)(a+bomega+comega^2)(a+bomega^2+comega) #
# " " = (a+b+c) (a^2+abomega^2+acomega+abomega+b^2omega^3+bcomega^2+ acomega^2+bcomega^4+c^2omega^3) #
# " " = (a+b+c) (a^2+b^2+c^2+acomega+abomega+bcomega+abomega^2+bcomega^2+ acomega^2+ #
# " " = (a+b+c) (a^2+b^2+c^2+ac(omega+omega^2) + ab(omega+omega^2) + bc(omega+omega^2) ) #
# " " = (a+b+c) (a^2+b^2+c^2 - ac - ab - bc) #
# " " = a^3+ab^2+ac^2 - a^2c - a^2b - abc+a^2b+b^3+bc^2 - abc - ab^2 - b^2c+a^2c+b^2c+c^3 - ac^2 - abc - bc^2 #
And the almost all cross terms cancel, leaving:
# RHS = a^3 + b^3 + c^3 - 3abc \ \ \ # QED