#omega# is a cube root of unity. Show the following?

#(a+b+c)(a+bomega+comega^2)(a+bomega^2+comega) = a^3 + b^3 + c^3 - 3abc#

1 Answer
Jul 20, 2017

We are given that #omega# is a cube root of unity; therefore #omega# satisfies the equation

# z^3 = 1 #

# :. z^3 - 1 = 0 #
# :. (z-1)(z^2+z+1) = 0 #

From which can get the actual values of the roots:

# z =1,(-1+-sqrt(3)i)/2 #

Thus some easily verifiable properties are that:

  • The roots can be denoted by #1, omega, omega^2# where #omega# is any of the complex roots.
  • #1+omega+omega^2=0 => omega+omega^2=-1#.
  • #omega^3=1 => omega^4=omega#. etc

So now, let us consider the RHS of the given expression:

# RHS = (a+b+c)(a+bomega+comega^2)(a+bomega^2+comega) #

# " " = (a+b+c) (a^2+abomega^2+acomega+abomega+b^2omega^3+bcomega^2+ acomega^2+bcomega^4+c^2omega^3) #

# " " = (a+b+c) (a^2+b^2+c^2+acomega+abomega+bcomega+abomega^2+bcomega^2+ acomega^2+ #

# " " = (a+b+c) (a^2+b^2+c^2+ac(omega+omega^2) + ab(omega+omega^2) + bc(omega+omega^2) ) #

# " " = (a+b+c) (a^2+b^2+c^2 - ac - ab - bc) #

# " " = a^3+ab^2+ac^2 - a^2c - a^2b - abc+a^2b+b^3+bc^2 - abc - ab^2 - b^2c+a^2c+b^2c+c^3 - ac^2 - abc - bc^2 #

And the almost all cross terms cancel, leaving:

# RHS = a^3 + b^3 + c^3 - 3abc \ \ \ # QED