What is the rectangular form of the curve described by the parametric equations: #x = acostheta+bsintheta# and #y = bcostheta+asintheta# ?
3 Answers
Given
From {1] we get
From [2] we get
subtracting [6] from [5]
similarly from [1]
and from [2]
subtracting [9] from [8] we get
From [7] and [10] we get
Explanation:
We rewrite the given eqns. as,
Solving these for
and,
Explanation:
Yet another way...
Given:
#x = acostheta+bsintheta#
#y = bcostheta+asintheta#
Then:
#xy = (acostheta+bsintheta)(bcostheta+asintheta)#
#color(white)(xy) = ab(cos^2theta+sin^2theta)+(a^2+b^2)costhetasintheta#
#color(white)(xy) = ab+(a^2+b^2)costhetasintheta#
So:
#costhetasintheta = (xy-ab)/(a^2+b^2)#
Also we find:
#x^2+y^2 = (acostheta+bsintheta)^2+(bcostheta+asintheta)^2#
#color(white)(x^2+y^2) = (a^2+b^2)(cos^2theta+sin^2theta)+4abcosthetasintheta#
#color(white)(x^2+y^2) = (a^2+b^2)+4abcosthetasintheta#
So:
#costhetasintheta = (x^2+y^2-(a^2+b^2))/(4ab)#
Putting these together, we find:
#(xy-ab)/(a^2+b^2) = (x^2+y^2-(a^2+b^2))/(4ab)#
Cross multiplying, this becomes:
#4ab(xy-ab) = (a^2+b^2)(x^2+y^2-(a^2+b^2))#
Hence:
#0 = (a^2+b^2)x^2+(a^2+b^2)y^2-4abxy-((a^2+b^2)^2-4a^2b^2)#
#color(white)(0) = (a^2+b^2)x^2+(a^2+b^2)y^2-4abxy-((a^4+2a^2b^2+b^4)-4a^2b^2)#
#color(white)(0) = (a^2+b^2)x^2+(a^2+b^2)y^2-4abxy-(a^4-2a^2b^2+b^4)#
#color(white)(0) = (a^2+b^2)x^2+(a^2+b^2)y^2-4abxy-(a^2-b^2)^2#
Notes
We can perform some simple checks on the answer by trying various combinations of
For example, with
#x = acos theta + asin theta = y#
and the derived equation gives us:
#0 = (a^2+a^2)x^2+(a^2+a^2)y^2-4a^2xy-(a^2-a^2)^2#
#color(white)(0) = 2a^2(x^2+y^2-2xy)#
#color(white)(0) = 2a^2(x-y)^2#
hence
For another example, with
#x = acos theta#
#y = asin theta#
which is the parametric form of a circle with radius
The derived equation gives us:
#0 = a^2x^2+a^2y^2-(a^2)^2 = a^2(x^2+y^2-a^2)#
That is:
#x^2+y^2 = a^2#
which is the standard form of the equation of a circle with radius