If #cosA=24/25# and #cosB=3/5# and #A# lies in #Q1#, find #cos(A+B)# and #cos(A-B)#?

2 Answers
Oct 8, 2017

#cos(A+B)=44/125# and #cos(A-B)=4/5#

Explanation:

As angles A and B are acute angles all trigonometric ratios are positive, hence

as #cosA=24/25#,

#sinA=sqrt(1-(24/25)^2)=sqrt(1-576/625)=sqrt(49/625)=7/25#

and as #cosB=3/5#,

#sinB=sqrt(1-(3/5)^2)=sqrt(1-9/25)=sqrt(16/25)=4/5#

Hence #cos(A+B)=cosAcosB-sinAsinB#

= #24/25xx3/5-7/25xx4/5=(72-28)/125=44/125#

and #cos(A-B)=cosAcosB+sinAsinB#

= #24/25xx3/5+7/25xx4/5=(72+28)/125=100/125=4/5#

Oct 8, 2017

#cos(A+B)=44/125,cos(A-B)=4/5#

Explanation:

#"since A and B are both acute then we are in the "#
#"first quadrant"#

#"using the "color(blue)"trigonometric identities"#

#•color(white)(x)cos(A+-B)=cosAcosB∓sinAsinB#

#cosA=24/25#

#•color(white)(x)sinA=sqrt(1-cos^2A)#

#color(white)(xxxxxx)=sqrt(1-(24/25)^2)#

#color(white)(xxxxxx)=sqrt(1-576/625)#

#color(white)(xxxxxx)=sqrt(49/625)=7/25#

#cosB=3/5#

#rArrsinB=sqrt(1-9/25)=sqrt(16/25)=4/5#

#rArrcos(A+B)=(24/25xx3/5)-(7/25xx4/5)#

#color(white)(xxxxxxxxxx)=72/125-28/125=44/125#

#rArrcos(A-B)=72/125+28/125=100/125=4/5#