What is the derivative of? : # d/dx (x^2 + 1)^(x) #
1 Answer
Nov 28, 2017
# d/dx (x^2 + 1)^(x) = ((2x^2)/(x^2+1) + ln(x^2+1) )(x^2 + 1)^(x)#
Explanation:
Let:
# y = (x^2 + 1)^(x) #
Taking natural logarithms of both sides:
# lny = ln {(x^2 + 1)^(x)} #
And using the properties of logarithms we have:
# lny = xln (x^2 + 1) #
We now differentiate wrt
# d/dx lny = (x)(d/dx ln (x^2 + 1)) + (d/dx x)(ln (x^2 + 1))#
Then using the chain rule this becomes:
# 1/y \ dy/dx = x * 1/(x^2+1) * 2x + 1 * ln(x^2+1) #
# :. dy/dx = y{(2x^2)/(x^2+1) + ln(x^2+1) }#
# :. dy/dx = ((2x^2)/(x^2+1) + ln(x^2+1) )(x^2 + 1)^(x)#