Question #ed4ea

1 Answer
Feb 10, 2018

#243x^5-405x^4+270x^3-90x^2+15x-1#

Explanation:

To expand a binomial of the form #(x+a)^n#, we use the Binomial Theorem.

The binomial theorem is as follows:

#sum_(k=0)^n((n),(k))x^(n-k)a^k#, where #((n),(k))=(n!)/(k!(n-k)!)#

Here Pascal's Triangle comes into play. What I wrote above as #((n),(k))#, (read as "n choose k") corresponds to the row and column number of a coefficient.

#n# is the row number, and #k# the column number.

Use the binomial theorem where #x=3x,a=-1,n=5#:

#sum_(k=0)^5((5),(k))(3x)^(5-k)(-1)^k#.

When #k=0#,

#(5!)/(0!(5-0)!)*(3x)^(5-0)(-1)^0#

#=1*243x^5*1#

#=243x^5#

When #k=1#,

#(5!)/(1!(5-1)!)*(3x)^(5-1)(-1)^1#

#=5*81x^4*-1#

#=-405x^4#

When #k=2#,

#(5!)/(2!(5-2)!)*(3x)^(5-2)(-1)^2#

#=10*27x^3*1#

#=270x^3#

When #k=3#,

#(5!)/(3!(5-3)!)*(3x)^(5-3)(-1)^3#

#=10*9x^2*-1#

#=-90x^2#

When #k=4#,

#(5!)/(4!(5-4)!)*(3x)^(5-4)(-1)^4#

#=5*3x*1#

#=15x#

When #k=5#

#(5!)/(5!(5-5)!)*(3x)^(5-5)(-1)^5#

#=1*1*-1#

#=-1#

Add up all your answers, and you get:

#243x^5-405x^4+270x^3-90x^2+15x-1#

Which is your answer.