Put xx and yy axes adequately so that
x^2 + y^2 = R^2x2+y2=R2
Area = pi R^2 = 25 pi Rightarrow R = 5πR2=25π⇒R=5
The chord is ABAB, such that
A = 5 (cos frac{pi}{8}, sin frac{pi}{8})A=5(cosπ8,sinπ8)
B = 5 (cos frac{pi}{3}, sin frac{pi}{3})B=5(cosπ3,sinπ3)
|AB|^2 = (x_A - x_B)^2 + (y_A - y_B)^2|AB|2=(xA−xB)2+(yA−yB)2
= 25 (cos a - cos b)^2 + 25 (sin a - sin b)^2=25(cosa−cosb)2+25(sina−sinb)2
= 25 (cos^2 a + cos^2 b - 2 cos a cos b + sin^2 a + sin^2 b - 2 sin a sin b)=25(cos2a+cos2b−2cosacosb+sin2a+sin2b−2sinasinb)
= 25 [1 + 1 - 2 cos(a - b) ]=25[1+1−2cos(a−b)]
= 50 [1 - cos(frac{pi}{3} - frac{pi}{8}) ]=50[1−cos(π3−π8)]
|AB| = 5 sqrt 2 sqrt {1 - cos (pi (8 - 3)/24)}|AB|=5√2√1−cos(π8−324)