A circle has a chord that goes from pi/3 π3 to pi/8 π8 radians on the circle. If the area of the circle is 25 pi 25π, what is the length of the chord?

1 Answer
Jan 22, 2017

5 sqrt 2 sqrt {1 - cos frac{5 pi}{24}}521cos5π24

Explanation:

Put xx and yy axes adequately so that

x^2 + y^2 = R^2x2+y2=R2

Area = pi R^2 = 25 pi Rightarrow R = 5πR2=25πR=5

The chord is ABAB, such that

A = 5 (cos frac{pi}{8}, sin frac{pi}{8})A=5(cosπ8,sinπ8)

B = 5 (cos frac{pi}{3}, sin frac{pi}{3})B=5(cosπ3,sinπ3)

|AB|^2 = (x_A - x_B)^2 + (y_A - y_B)^2|AB|2=(xAxB)2+(yAyB)2

= 25 (cos a - cos b)^2 + 25 (sin a - sin b)^2=25(cosacosb)2+25(sinasinb)2

= 25 (cos^2 a + cos^2 b - 2 cos a cos b + sin^2 a + sin^2 b - 2 sin a sin b)=25(cos2a+cos2b2cosacosb+sin2a+sin2b2sinasinb)

= 25 [1 + 1 - 2 cos(a - b) ]=25[1+12cos(ab)]

= 50 [1 - cos(frac{pi}{3} - frac{pi}{8}) ]=50[1cos(π3π8)]

|AB| = 5 sqrt 2 sqrt {1 - cos (pi (8 - 3)/24)}|AB|=521cos(π8324)