A solid disk, spinning counter-clockwise, has a mass of #6 kg# and a radius of #1/5 m#. If a point on the edge of the disk is moving at #12/5 m/s# in the direction perpendicular to the disk's radius, what is the disk's angular momentum and velocity?

1 Answer
Jan 12, 2018

The angular momentum is #=1.44kgm^2s^-1# and the angular velocity is #=12rads^-1#

Explanation:

The angular velocity is

#omega=(Deltatheta)/(Deltat)#

#v=r*((Deltatheta)/(Deltat))=r omega#

#omega=v/r#

where,

#v=12/5ms^(-1)#

#r=1/5m#

So,

The angular velocity is

#omega=(12/5)/(1/5)=12rads^-1#

The angular momentum is #L=Iomega#

where #I# is the moment of inertia

For a solid disc, #I=(mr^2)/2#

The mass is #m=6 kg#

So, #I=6*(1/5)^2/2=0.12kgm^2#

The angular momentum is

#L=12*0.12=1.44kgm^2s^-1#