# A triangle has sides A, B, and C. Sides A and B are of lengths 5 and 8, respectively, and the angle between A and B is (11pi)/12 . What is the length of side C?

Then teach the underlying concepts
Don't copy without citing sources
preview
?

Write a one sentence answer...

#### Explanation

Explain in detail...

#### Explanation:

I want someone to double check my answer

Describe your changes (optional) 200

1
Mar 25, 2018

color(indigo)("Length of side c " = sqrt(a^2 + b^2 - (2 a b cos C)) ~~ 12.89

#### Explanation:

$G i v e n : a = 5 , b = 8 , \hat{C} = \frac{11 \pi}{12} , \text{To find side c}$.

Applying cosine law,

$c = \sqrt{{a}^{2} + {b}^{2} - \left(2 a b \cos C\right)}$

c = sqrt(5^2 n+ 8^2 - (2 * 5 * 8 * cos ((11pi)/12)

color(indigo)("Length of side c " = sqrt(25 + 64 - 80 cos ((11pi)/12)) ~~ 12.89

##### Just asked! See more
• 18 minutes ago
• 19 minutes ago
• 25 minutes ago
• 26 minutes ago
• 3 minutes ago
• 6 minutes ago
• 7 minutes ago
• 11 minutes ago
• 13 minutes ago
• 15 minutes ago
• 18 minutes ago
• 19 minutes ago
• 25 minutes ago
• 26 minutes ago