An ellipsoid has radii with lengths of #6 #, #7 #, and #12 #. A portion the size of a hemisphere with a radius of #8 # is removed form the ellipsoid. What is the remaining volume of the ellipsoid?

1 Answer
Mar 4, 2016

#992/3pi~=1038.820 " cubic units"#

Explanation:

#V_(Ellipsoid)=(4pi)/3*abc#
#Delta V=V_(Sphere)/2=(4pi)/3*r^3#

#V=V_0-Delta V#
#V=V_(Ellipsoid)-V_(Hemisphere)#
#V=(4pi)/3*6*7*12-(2pi)/3*8^3#
#V=672pi-1024/3pi=992/3pi~=1038.820#

If you need to deduce the volume of the ellipsoid here it is a way:

For a ellipsoid of such an equation:
#x^2/a^2+y^2/b^2+z^2/c^2=1#
We can find the volume by integration
-> 3D Variation: from #x=-a/(bc)*sqrt(b^2c^2-c^2y^2-b^2z^2)# to #x=a/(bc)*sqrt(b^2c^2-c^2y^2-b^2z^2)#
-> 2D Variation: from #y=-b/c(c^2-z^2)# to #y=b/c(c^2-z^2)#
-> 1D Variation: from #z=-c# to #z=c#

So

#V=int_(-c)^c int_(-b/c(c^2-z^2))^(b/c(c^2-z^2)) int_( -a/(bc)*sqrt(b^2c^2-c^2y^2-b^2z^2))^(a/(bc)*sqrt(b^2c^2-c^2y^2-b^2z^2)) dx*dy*dz#

Since the partial volumes of the 8 spatial regions (limited by the planes formed by the x-axis, y-axis and z-axis) are equal:

#V=2*2*2*int_0^c int_0^(b/c(c^2-z^2)) int_0^(a/(bc)*sqrt(b^2c^2-c^2y^2-b^2z^2)) dx*dy*dz#
#V=8*int_0^c int_0^(b/c(c^2-z^2)) x|_0^(a/(bc)*sqrt(b^2c^2-c^2y^2-b^2z^2)) dy*dz#
#V=(8a)/(bc)*int_0^c int_0^(b/c(c^2-z^2)) sqrt(b^2c^2-c^2y^2-b^2z^2) dy*dz#
Making
#cy=sqrt(b^2c^2-b^2z^2)sin alpha=b sqrt(c^2-z^2)sin alpha# (remark that when #y=0# then #alpha=0#, when #y=b/c(c^2-z^2)# then #alpha =pi/2)#
#cdy=b sqrt(c^2-z^2)cos alpha dalpha# => #dy=b/csqrt(c^2-z^2)cos alpha dalpha#

So the expression becomes

#V=(8a)/(cancel(b)c)*int_0^c int_0^(pi/2) [cancel(b)sqrt(c^2-z^2)cos alpha][b/csqrt(c^2-z^2)cos alpha dalpha] dz#
#V=(8ab)/c^2*int_0^c int_0^(pi/2)(c^2-z^2)cos^2 alpha dalpha* dz#
#V=(8ab)/c^2*int_0^c int_0^(pi/2)(c^2-z^2)(cos (2alpha)/2+1/2)dalpha*dz#
#V=(8ab)/c^2*int_0^c (c^2-z^2)(sin (2alpha)/4+alpha/2)|_0^(pi/2)dz#
#V=(8ab)/c^2*(pi/4)int_0^c (c^2-z^2)dz#
#V=(2ab)/c^2*pi*(c^2z-z^3/3)|_0^c=(2ab)/c^2*pi*(c^3-c^3/3)=2abc*pi(2/3)# => #V_(Ellipsoid)=(4pi)/3abc#