Consider the surface xyz=30. How do you find the unit normal vector to the surface at (2,5,3)?

1 Answer
Dec 29, 2016

#hatvecn=1/19(15hatveci+6hatvecj+10hatveck)#

Explanation:

#xyz=30#

write as

#f(x,y,z)=xyz-30=0#

vector normal to #" "f(x)" "#is given by #gradf(x,y,z)#

#gradf(x,y,z)=(hatvecidel/(delx)+hatvecjdel/(dely)+hatveckdel/(delz))(xyz-30)#

#gradf(x,y,z)=yzhatveci+xzhatvecj+xyhatveck#

#gradf(2,5,3)=(5xx3)hatveci+(2xx3)hatvecj+(2xx5)hatveck#

#gradf(2,5,3)=15hatveci+6hatvecj+10hatveck#

call this normal vector #""vecn#

unit vector in this direction is given by

#hatvecn=vecn/|vecn|#

#|vecn|=sqrt(15^2+6^2+10^2)=19#

#hatvecn=1/19(15hatveci+6hatvecj+10hatveck)#