Could somebody please help me solve this integral?

#int1/(sqrtx*(root4x + root6x))dx#

2 Answers
Jan 16, 2017

# 4root4x-6root6x+12root12x-12ln|root12x+1|+C.#

Explanation:

Observe that, the l.c.m. of #2,4 and 6# is #12#, so, let us substitute

#x=y^12,"so that, "dx=12y^11dy.#

Hence, #I=int1/{sqrtx(root4x+root6x)}dx#

#=int(12y^11)/{y^6(y^3+y^2)}dy=12inty^3/(y+1)dy#

#=12int{(y^3+1)-1}/(y+1)dy#

#=12int{(y^3+1)/(y+1)-1/(y+1)}dy#

#=12int{(y+1)(y^2-y+1)}/(y+1)dy-12int1/(y+1)dy#

#=12int(y^2-y+1)dy-12ln|y+1|#

#=12(y^3/3-y^2/2+y)-12ln|y+1|#

#=4y^3-6y^2+12y-12ln|y+1|, and, because, y=x^(1/12)#,

#=4x^(1/4)-6x^(1/6)+12x^(1/12)-12ln|x^(1/12)+1|#.

#:. I=4root4x-6root6x+12root12x-12ln|root12x+1|+C.#

Spread the Joy of Maths.!

Jan 16, 2017

#int (dx)/(sqrt(x)(root(4)x+root(6)x)) = 4(1+x^(1/12))^3-18(1+x^(1/12))^2+16+16x^(1/12)-12 ln abs (1+x^(1/12)) +C#

Explanation:

Simplify the expression of the integrand function:

#int (dx)/(sqrt(x)(root(4)x+root(6)x)) = int (dx)/(x^(1/2)(x^(1/4)+x^(1/6)) )= int (dx)/(x^(1/2)x^(1/6)(x^(1/4-1/6)+1) )= int(dx)/(x^(2/3)(1+x^(1/12)) #

Substitute:

#t= x^(1/12)#

#x= t^12#

#dx = 12t^11dt#

#int (dx)/(sqrt(x)(root(4)x+root(6)x)) = int (12t^11dt)/(t^8(1+t)) = 12 int (t^3dt)/(1+t)#

Substitute:

#u= 1+t#

#du = dt#

#int (dx)/(sqrt(x)(root(4)x+root(6)x)) = int (12t^11dt)/(t^8(1+t)) = 12 int ((u-1)^3du)/u = 12 int (u^3-3u^2+3u-1)/u du = 12 int (u^2-3u+3-1/u) du = 4u^3-18u^2+36u-12lnabs(u)+C#

Substituting back:

#u = 1+t = 1+x^(1/12)#

#int (dx)/(sqrt(x)(root(4)x+root(6)x)) = 4(1+x^(1/12))^3-18(1+x^(1/12))^2+16+16x^(1/12)-12 ln abs (1+x^(1/12)) +C#

You can then develop and simplify the powers to have a more compact expression.