Evaluate #I=\int\sec^3(x)dx#?

The problem suggests using integration by parts.
After splitting the integral into #\int\sec^2(x)\sec(x)dx#, I tried #u=\sec(x)# and #dv=\sec^2(x)dx#...

But I am stuck on the resulting #uv-\intvdu# form (here is the equation I got).

2 Answers
Apr 9, 2018

#int sec^3x dx = (secxtanx)/2 + 1/2ln abs (secx+tanx)+C#

Explanation:

Note that:

#d/dx tanx = sec^2x#

#d/dx secx = secx tanx#

so:

#int sec^3x dx = int secx * sec^2x dx = int secx d(tanx)#

so, integrating by parts:

#int sec^3x dx = secxtanx - int tanx d(secx)#

#int sec^3x dx = secxtanx - int secx tan^2xdx#

Use now the trigonometric identity:

#tan^2x = sec^2x -1#

to have:

#int sec^3x dx = secxtanx - int secx (sec^2x-1)dx#

and using the linearity of the integral:

#int sec^3x dx = secxtanx - int sec^3xdx + int secxdx#

The integral to solve now appears on both sides of the equation, then:

#2int sec^3x dx = secxtanx + int secxdx#

#int sec^3x dx = (secxtanx)/2 + 1/2 int secxdx#

You can see here how to solve the resulting integral to have:

#int sec^3x dx = (secxtanx)/2 + 1/2ln abs (secx+tanx)+C#

Apr 9, 2018

#I=1/2tanxsecx+1/2ln|tanx+secx|+c#

Explanation:

Here,

#I=intsec^3xdx#

#=intsecxsec^2xdx#

#=intsqrt(1+tan^2x)sec^2xdx#

Let , #tanx=u=>sec^2xdx=du#

#I=intsqrt(1+u^2)du#

#=u/2sqrt(1+u^2)+1/2ln|u+sqrt(u^2+1)|+c#,where, #u=tanx#

#=1/2tanxsecx+1/2ln|tanx+sqrt(1+tan^2x)|+c#

#I=1/2tanxsecx+1/2ln|tanx+secx|+c#