Consider the geometric series:
#sum_(n=0)^oo q^n = 1/(1-q)#
for # absq < 1#.
Let #q=-x^2#
#1/(1+x^2) = sum_(n=0)^oo (-1)^nx^(2n)#
Integrate term by term:
#int_0^x dt/(1+t^2) = sum_(n=0)^oo (-1)^n int_0^x t^(2n)dt#
#arctanx = sum_(n=0)^oo (-1)^n x^(2n+1)/(2n+1)dt#
Integrate again, considering that integrating by parts:
#int arctanx dx = xarctanx - int x/(1+x^2)dx#
#int arctanx dx = xarctanx - 1/2 int (d(1+x^2))/(1+x^2)#
#int arctanx dx = xarctanx - 1/2 ln(1+x^2)+c#
so:
#int_0^x arctant = sum_(n=0)^oo (-1)^n/(2n+1) int_0^x t^(2n+1)dt#
#xarctanx - 1/2 ln(1+x^2) = sum_(n=0)^oo (-1)^n x^(2n+2)/((2n+1)(2n+2)) #
Let now #x=1/sqrt3#. As #0 < 1/sqrt3 < 1# the series is convergent in this point:
#1/sqrt3arctan(1/sqrt3) - 1/2 ln(1+1/3) = sum_(n=0)^oo (-1)^n 1/(sqrt3)^(2n+2)1/((2n+1)(2n+2)) #
note that:
#(sqrt3)^(2n+2) = 3*(sqrt3)^(2n) = 3*3^n#
so:
#1/sqrt3arctan(1/sqrt3) - 1/2 ln(1+1/3) = 1/3sum_(n=0)^oo (-1)^n 1/3^n 1/((2n+1)(2n+2)) #
Extract now the first two terms for #n=0# and #n=1#:
#1/sqrt3arctan(1/sqrt3) - 1/2 ln(1+1/3) = 1/6 - 1/108 +1/3sum_(n=2)^oo (-1)^n 1/3^n 1/((2n+1)(2n+2)) #
#1/sqrt3arctan(1/sqrt3) - 1/2 ln(1+1/3) - 1/6 + 1/108 =1/3sum_(n=2)^oo (-1)^n 1/3^n 1/((2n+1)(2n+2)) #
#sqrt3arctan(1/sqrt3) - 3/2 ln(4/3) - 17/36 =sum_(n=2)^oo (-1)^n 1/3^n 1/((2n+1)(2n+2)) #