#"Reminder"#
#(u/v)'=(u'v-uv')/v^2#
#(uv)'=u'v+uv'#
Calculate the first and second derivatives
#f(x)=e^x/(5x^2)+1#
#f'(x)=(e^x*(5x^2)-e^x*(10x))/(25x^4)=((x-2)e^x)/(5x^3)#
#(x-2)'=1#
#((x-2)e^x)'=e^x+(x-2)e^x=e^x(x-1)#
#f''(x)=(e^x(x-1)(5x^3)-(x-2)e^x(15x^2))/(25x^6)#
#=(e^x(x^2-x-3x+6))/(5x^4)#
#=(e^x(x^2-4x+6))/(5x^4)#
The inflection points are when #f''(x)=0#
The discriminant of the quadratic equation #x^2-4x+6=0#
is
#Delta=b^2-4ac=(-4)^2-4*(1)*(6)=16-24=-8#
As the discriminant is negative, the second derivative
#f''(x)>0#, #AA x in RR -{0}#
The variation chart is as follows
#color(white)(aaaa)##"Interval"##color(white)(aaaa)##(-oo,0)##color(white)(aaaa)##(0, +oo)#
#color(white)(aaaa)##"Sign f''(x)"##color(white)(aaaaaa)##+##color(white)(aaaaaaaa)##+#
#color(white)(aaaaaaa)##"f(x)"##color(white)(aaaaaaaa)##uu##color(white)(aaaaaaaa)##uu#
graph{e^x/(5x^2)+1 [-9.71, 10.29, -1.96, 8.04]}