Given #f(x)=12x^2+x-2#, how do you find the axis of symmetry, vertex, max or min, y-intercept, end behavior, domain range?

1 Answer
Jan 10, 2017

See explanation

Explanation:

Notice they do not ask for the x-intercepts implying that we can 'fiddle it'.

#color(blue)("Determine if max or min")#
The coefficient of #x^2# is positive so the graph is of form #uu# thus the vertex occurs at a minimum.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the y intercept")#

#y_("intercept") = -2 larr" read directly off the given function."#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the axis of symmetry" -> "vertex")#

Write as:#" "12(x^2+1/12x)-2#

#x_("vertex")=(-1/2)xx1/12 = -1/24 #

#=> "axis of symmetry "->x=-1/24#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine the vertex")#

Substitute #x=-1/24# giving:

#y=12x^2+x-2color(white)(.)->color(white)(.)y_("vertex")=12(-1/24)^2+(-1/24)-2#

#" "y_("vertex")=12/576-1/24-1152/576#

#" "y_("vertex")=12/576-24/576-1152/576#

#" "y_("vertex")=-1164/576#

#" "y_("vertex") =color(white)(-)-2 1/48#

#"vertex "->(x,y)=(-1/24,-97/48)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine end behaviour")#

As #x# becomes bigger and bigger #12x^2# becomes considerably bigger than the rest. As this state grows further the #+x-2# become insignificant. Thus we are looking at:

#lim_(x->+-oo)y=lim_(x->+-oo) 12x^2 -> 12(+-oo)->+-oo#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Determine domain and range")#

Range is output #f(x) -> [-97/48,oo)#
Domain is input of #f(x) -> {x: x in RR, x in (-oo,+oo)} #

Tony B