Given #f(x)=xsqrt(2-x)#, how do you find the interval where f is decreasing?

1 Answer
Nov 13, 2016

#f(x)# is decreasing when #x in[4/3, 2] #

Explanation:

The domain of #f(x)# is #(2-x)>=0#
#x<=2#

To calculate the derivative, we use

#(sqrtu)'=1/(2sqrtu)#

and #(gh)'=g'h+gh'#

Let's calculate the derivative of #f(x)#

#f'(x)=1*sqrt(2-x)+x*1/(2sqrt(2-x))*-1#

#f'(x)=sqrt(2-x)-x/(2sqrt(2-x))#

#=(2(2-x)-x)/(2sqrt(2-x))=(4-2x-x)/(2sqrt(2-x))#

#f'(x)=(4-3x)/(2sqrt(2-x))#

#f'(x)=0##=>##x=4/3#

let's do a sign chart

#color(white)(aaaaa)##x##color(white)(aaaaa)##-oo##color(white)(aaaaa)##4/3##color(white)(aaaaa)##2#

#color(white)(aaaaa)##f'(x)##color(white)(aaaaaa)##+##color(white)(aa)##0##color(white)(aaa)##-#

#color(white)(aaaaaa)##f(x)##color(white)(aaaaaa)##uarr##color(white)(aa)##0##color(white)(aaa)##darr#

Therefore, #f(x)# is decreasing when #x in[4/3, 2] #

graph{xsqrt(2-x) [-4.382, 4.386, -2.19, 2.192]}