The domain of #f(x)# is #(2-x)>=0#
#x<=2#
To calculate the derivative, we use
#(sqrtu)'=1/(2sqrtu)#
and #(gh)'=g'h+gh'#
Let's calculate the derivative of #f(x)#
#f'(x)=1*sqrt(2-x)+x*1/(2sqrt(2-x))*-1#
#f'(x)=sqrt(2-x)-x/(2sqrt(2-x))#
#=(2(2-x)-x)/(2sqrt(2-x))=(4-2x-x)/(2sqrt(2-x))#
#f'(x)=(4-3x)/(2sqrt(2-x))#
#f'(x)=0##=>##x=4/3#
let's do a sign chart
#color(white)(aaaaa)##x##color(white)(aaaaa)##-oo##color(white)(aaaaa)##4/3##color(white)(aaaaa)##2#
#color(white)(aaaaa)##f'(x)##color(white)(aaaaaa)##+##color(white)(aa)##0##color(white)(aaa)##-#
#color(white)(aaaaaa)##f(x)##color(white)(aaaaaa)##uarr##color(white)(aa)##0##color(white)(aaa)##darr#
Therefore, #f(x)# is decreasing when #x in[4/3, 2] #
graph{xsqrt(2-x) [-4.382, 4.386, -2.19, 2.192]}