Given three points (2,-2) (1,-7) (6,-2) how do you write a quadratic function in standard form with the points?

1 Answer
May 28, 2017

Write 3 linear equations by substituting the 3 points into the standard form,

#y = ax^2+bx+c" [1]"#

, and then solve the 3 equations for a, b, and c.

Explanation:

Substitute (2,-2) into equation [1]:

#a(2)^2+b(2)+c = -2#

Write this as the first row an augmented matrix:

#[(4,2,1,|,-2)]#

Substitute (1,-7) into equation [1]:

#a(1)^2+b(1)+c = -7#

Write this as the second row of the augmented matrix:

#[ (4,2,1,|,-2), (1,1,1,|,-7) ]#

Substitute (6,-2) into equation [1]:

#a(6)^2+b(6)+c = -2#

Write this as the second row of the augmented matrix:

#[ (4,2,1,|,-2), (1,1,1,|,-7), (36,6,1,|,-2) ]#

Perform elementary row operations, until an Identity matrix is obtained on the left.

#R_1harrR_2#

#[ (1,1,1,|,-7), (4,2,1,|,-2), (36,6,1,|,-2) ]#

#R_2-4R_1to R_2#

#[ (1,1,1,|,-7), (0,-2,-3,|,26), (36,6,1,|,-2) ]#

#R_3-36R_1to R_3#

#[ (1,1,1,|,-7), (0,-2,-3,|,26), (0,-30,-35,|,250) ]#

#R_3-15R_2toR_3#

#[ (1,1,1,|,-7), (0,-2,-3,|,26), (0,0,10,|,-140) ]#

#1/10R_3toR_3#

#[ (1,1,1,|,-7), (0,-2,-3,|,26), (0,0,1,|,-14) ]#

#R_2 + 3R_3toR_2#

#[ (1,1,1,|,-7), (0,-2,0,|,-16), (0,0,1,|,-14) ]#

#-1/2R_2 to R_2#

#[ (1,1,1,|,-7), (0,1,0,|,8), (0,0,1,|,-14) ]#

#R_1-R_3toR_1#

#[ (1,1,0,|,7), (0,1,0,|,8), (0,0,1,|,-14) ]#

#R_1-R_2toR_1#

#[ (1,0,0,|,-1), (0,1,0,|,8), (0,0,1,|,-14) ]#

There is an identity matrix on the left, therefore, #a = -1, b = 8, and c = -14#

Substituting these values into equation [1]:

#y = -x^2+8x-14" [2]" larr# answer.

Check:

Substitute (2,-2) into equation [2]:

#-2=-(2)^2+8(2)-14#
#-2=-2#

Substitute (1,-7) into equation [2]:

#-7=-1+8-14#
#-7=-7#

Substitute (6,-2) into equation [2]:

#-2=-(6)^2+8(6)-14#
#-2=-2#

This checks.