How do I find the binomial expansion of #(2x+1)^3#?

2 Answers
Dec 22, 2017

# 1 + 6x + 12x^2 + 8x^3 #

Explanation:

We must use our knowledge of the binomial expansion:

Method 1:

We can use:

#(x+1)^n = 1 + nx + (n(n-1))/(2!) x^2 + (n(n-1)(n-2))/(3!) x^3 + ... #

Substituting #n = 3 # and #x# for # 2x # #=>#

#(2x+1)^3 = 1 + (3*2x) + (3*2)/(2!) * (2x)^2 + (3*2*1)/(3!) * (2x)^3 #

#color(red)(= 1 + 6x + 12x^2 + 8x^3 #

Method 2:

We can use:

#(A+B)^n = A^n + ((n),(1))A^(n-1)B^1 + ((n),(2))A^(n-2)B^2 + ...#

Letting #A = 2x and B =1 # for this circumstance:

#(2x+1)^3 = (2x)^3 + ((3),(1))(2x)^2(1) + ((3),(2))(2x)^1(1)^2 + ((3),(3))(2x)^0 (1)^3 #

# = color(red)( 8x^3 + 12x^2 + 6x + 1 ) #

Dec 22, 2017

#(2x+1)^3=8x^3+12x^2+6x+1#

Explanation:

we use Pascal's triangle for the coefficients

# color(white)( 0000000000000000000 )1 #

#(a+b)^2rarrcolor(white)(0000000)1,2,1#

#(a+b)^3rarrcolor(white)(000000)1,3,3,1#

so we need #" "color(red)(1,3,3,1)#

the powers of the terms will sum to #3#

and startingthe first term will be #3# and descend in #1s#

thus

#(2x+1)^3=color(red)(1)(2x)^3+color(red)(3)(2x)^2(1)+color(red)(3)(2x)(1)^2+color(red)(1)*1^3#

#(2x+1)^3=8x^3+12x^2+6x+1#