How do I find the binomial expansion of #(8-9x)^(1/3)#? Precalculus The Binomial Theorem Pascal's Triangle and Binomial Expansion 1 Answer Roy E. Dec 29, 2016 #=2[1-3/8x-9/64x^2-...]# Explanation: #(8-9x)^(1/3)# #=(8^(1/3))(1+(-(9x)/8))^(1/3)# #=2[1+((1/3)/(1!))((-9x)/8)+(((1/3)(1/3-1))/(2!))((-9x)/8)^2...]# provided #|(9x)/8|<1# #=2[1-3/8x-9/64x^2-...]# provided #|x|<8/9# Answer link Related questions What is Pascal's triangle? How do I find the #n#th row of Pascal's triangle? How does Pascal's triangle relate to binomial expansion? How do I find a coefficient using Pascal's triangle? How do I use Pascal's triangle to expand #(2x + y)^4#? How do I use Pascal's triangle to expand #(3a + b)^4#? How do I use Pascal's triangle to expand #(x + 2)^5#? How do I use Pascal's triangle to expand #(x - 1)^5#? How do I use Pascal's triangle to expand a binomial? How do I use Pascal's triangle to expand the binomial #(a-b)^6#? See all questions in Pascal's Triangle and Binomial Expansion Impact of this question 3845 views around the world You can reuse this answer Creative Commons License