How do I find the value of sin 225? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Trevor Ryan. Oct 29, 2015 #-1/sqrt2# Explanation: #sin225^@=sin(180^@+45^@)# #=sin180^@cos45^@+cos180^@sin45^@# #=(0)(1/sqrt2)+(-1)1/sqrt2# =#-1/sqrt2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 73867 views around the world You can reuse this answer Creative Commons License