How do I find the vertex of #f(x)=x^2+6x+5#?
2 Answers
Jul 22, 2018
Explanation:
#"given the parabola in "color(blue)"standard form"#
#•color(white)(x)y=ax^2+bx+c color(white)(x);a!=0#
#"then the x-coordinate of the vertex is"#
#•color(white)(x)x_(color(red)"vertex")=-b/(2a)#
#f(x)=x^2+6x+5" is in standard form"#
#"with "a=1,b=6" and "c=5#
#x_("vertex")=-6/2=-3#
#"substitute this value into the equation for y"#
#y_("vertex")=(-3)^2+6(-3)+5=-4#
#rArrcolor(magenta)"vertex "=(-3,-4)#
graph{x^2+6x+5 [-10, 10, -5, 5]}
Jul 22, 2018
Explanation:
The given function:
Above equation is in the standard form of vertical parabola:
Which has vertex at