How do I find the integral #intcos(x)/(sin^2(x)+sin(x))dx# ?
1 Answer
Aug 10, 2014
#=ln(sinx/(sin(x)+1))+c# , where#c# is a constantFull Answer
#=intcos(x)/(sin^2(x)+sin(x))dx#
#=intcos(x)/(sin(x)(sin(x)+1))dx# let's
#sin(x)=t# , then,#cos(x)dx=dt#
#=int1/(t(t+1))dt# Using Partial Fractions,
#1/(t(t+1))=A/t+B/(t+1)# .............#(i)# multiplying both sides with
#t(t+1)# ,
#1=A(t+1)+Bt#
#1=A+(A+B)t# comparing constant and coefficient on both sides, we get
#A=1# ,
#A+B=0# , which implies#B=-1# plugging the values of
#A# and#B# in#(i)# ,
#1/(t(t+1))=1/t-1/(t+1)# integrating both sides with respect to
#t# ,
#int1/(t(t+1))dt=int1/tdt-int1/(t+1)dt#
#=lnt-ln(t+1)+c# , where#c# is a constant
#=ln(t/(t+1))+c# , where#c# is a constantsubstituting
#t# , yields
#=ln(sinx/(sin(x)+1))+c# , where#c# is a constant