How do you classify the conic #x^2+6x-2y+13=0#?

1 Answer
Oct 2, 2016

Answer:

#x^2+6x-2y+13=0# is a parabola.

Explanation:

Let the equation be of the type #Ax^2+Bxy+Cy^2+Dx+Ey+F=0#

then if

#B^2-4AC=0# and #A=0# or #C=0#, it is a parabola

#B^2-4AC<0# and #A=C#, it is a circle

#B^2-4AC<0# and #A!=C#, it is an ellipse

#B^2-4AC>0#, it is a hyperbola

In the given equation #x^2+6x-2y+13=0#

#A=1#, #B=0# and #C=0#

Therefore, #B^2-4AC=0^2-4xx1xx0=-0# and #C=0# but #A!=0#

Hence, #x^2+6x-2y+13=0# is a parabola.
graph{x^2+6x-2y+13=0 [-13.79, 6.21, -0.92, 9.08]}