How do you convert #(4, 0)# into polar coordinates? Precalculus Polar Coordinates Converting Coordinates from Polar to Rectangular 1 Answer Trevor Ryan. Dec 10, 2015 #4/_0^@# Explanation: Since the length from the origin to the point #(4,0)# on the real axis (positive x-axis) is 4 units, and the nagle it makes with the real axis is #0^@#, it implies that in polar form it is #4/_0^@#. Answer link Related questions What is the formula for converting polar coordinates to rectangular coordinates? How do I convert polar coordinates #(5, 30^circ)# to rectangular coordinates? How do I convert polar coordinates #(3.6, 56.31)# to rectangular coordinates? How do I convert polar coordinates #(10, -pi/4)# to rectangular coordinates? How do I convert polar coordinates #(4,-pi/3)# to rectangular coordinates? How do I convert polar coordinates #(6, 60^circ)# to rectangular coordinates? How do I convert polar coordinates #(-4, 230^circ)# to rectangular coordinates? What is the Cartesian equivalent of polar coordinates #(sqrt97, 66^circ)#? What is the Cartesian equivalent of polar coordinates #(2, pi/6)#? What is the Cartesian equivalent of polar coordinates #(7, pi)#? See all questions in Converting Coordinates from Polar to Rectangular Impact of this question 2409 views around the world You can reuse this answer Creative Commons License