How do you cube #1-sqrt3i#?
2 Answers
Oct 15, 2015
-8
Explanation:
You will have to multiply it one at a time.
Oct 15, 2015
So
Explanation:
De Moivre's formula tells us that:
#(cos theta + i sin theta)^n = cos (n theta) + i sin (n theta)#
Now
#1 - sqrt(3)i = 2(1/2 - sqrt(3)/2i) = 2(cos (-pi/3) + i sin (-pi/3))#
So
#(1 - sqrt(3)i)^3 = (2(cos (-pi/3) + i sin (-pi/3)))^3#
#= 2^3(cos (-pi/3) + i sin (-pi/3))^3 = 8(cos (-pi) + i sin (-pi))#
#= 8*-1 = -8#