How do you derive exact algebraic formulae for #sin (pi/10)# and #cos (pi/10)# ?

2 Answers
Jun 30, 2017

See explanation...

Explanation:

The fifth roots of #1# form the vertices of a regular pentagon in the the Complex plane:

graph{((x-1)^2+y^2-0.001)((x-cos((2pi)/5))^2+(y-sin((2pi)/5))^2-0.001)((x-cos((4pi)/5))^2+(y-sin((4pi)/5))^2-0.001)((x-cos((6pi)/5))^2+(y-sin((6pi)/5))^2-0.001)((x-cos((8pi)/5))^2+(y-sin((8pi)/5))^2-0.001) = 0 [-2.5, 2.5, -1.25, 1.25]}

We can write these roots in trigonometric form as:

#cos ((2npi)/5) + i sin((2npi)/5)" "# for #n = 0,1,2,3,4#

These are the zeros of:

#x^5-1 = (x-1)(x^4+x^3+x^2+x+1)#

#color(white)(x^5-1) = (x-1)x^2(x^2+x+1+1/x+1/x^2)#

#color(white)(x^5-1) = (x-1)x^2((x+1/x)^2+(x+1/x)-1)#

#color(white)(x^5-1) = (x-1)x^2(((x+1/x)+1/2)^2-(sqrt(5)/2)^2)#

#color(white)(x^5-1) = (x-1)x^2(x+1/x+1/2-sqrt(5)/2)(x+1/x+1/2+sqrt(5)/2)#

#color(white)(x^5-1) = (x-1)(x^2+(1/2-sqrt(5)/2)x + 1)(x^2+(1/2+sqrt(5)/2)x+1)#

Hence we find:

#sin(pi/10) + i cos(pi/10) = cos((2pi)/5) + i sin((2pi)/5)#

is a root of:

#x^2+(1/2-sqrt(5)/2)x + 1 = 0#

Using the quadratic formula, we find roots:

#x = 1/4(sqrt(5)-1) +- i 1/4sqrt(10 + 2sqrt(5))#

Equating real and imaginary parts and choosing the appropriate sign, we find:

#sin(pi/10) = 1/4(sqrt(5)-1)#

#cos(pi/10) = 1/4sqrt(10+2sqrt(5))#

#sin(pi/10)=(sqrt5-1)/4# and #cos(pi/10)=sqrt(10+2sqrt5)/4#

Explanation:

Let #pi/10=A#, then #5A=pi/2# or #3A=pi/2-2A#

and #sin3A=sin(pi/2-2A)#

i.e. #3sinA-4sin^3A=sin3A=cos2A=1-2sin^2A#

or #4sin^3A-2sin^2A-3sinA+1=0#

#(sinA-1)(4sin^2A+2sinA-1)=0# and dividing by #sinA-1# we get

or #4sin^2A+2sinA-1=0#

or #sinA=(-2+-sqrt(2^2+16))/8=(-2+-2sqrt5)/8=(-1+-sqrt5)/4#

but as #sinA# cannot be negative, #sinA=sin(pi/10)=(sqrt5-1)/4#

and #cos(pi/10)=sqrt(1-((sqrt5-1)/4)^2)#

= #sqrt(1-(6-2sqrt5)/16)=sqrt(10+2sqrt5)/4#