How do you differentiate #f(x)=3-7x^3+3x^7#?

1 Answer
Nov 2, 2016

Therefore, differentiating #f(x)=3-7x^3+3x^7.# w.r.t #x#, comes to be #-21x^2+21x^6.# (answer).

Explanation:

Let, #y=f(x)=3-7x^3+3x^7.#

#:. #Differentiating #y# w.r.t #x# is,

#d/(dx)(y)=dy/dx=d/(dx)(3-7x^3+3x^7).#
#:.dy/dx=0-7*3*x^(3-1)+3*7*x^(7-1).#
#:.dy/dx=-21x^2+21x^6.#

Therefore, differentiating #y# w.r.t #x#, comes to be #-21x^2+21x^6.# (answer).