How do you differentiate the following parametric equation: # x(t)=lnt-2t, y(t)= cos^2t #?

1 Answer

#dy/dx=(t*sin 2t)/(2t-1)#

Explanation:

Start from the given #x(t)=ln t -2t# and #y(t)=cos^2 t#

to find #dy/dx# the equivalent of #dy/dt# and #dx/dt# must be obtained then proceed to determine #dy/dx=((dy/dt))/((dx/dt))#

#dy/dt=d/dt(cos^2 t)=2*cos t*(-sin t)*dt/dt=-2*sin t*cos t#

#dy/dt=-2*sint * cos t#

Next, find #dx/dt#

#dx/dt=d/dt(ln t - 2t)=1/t-2=(1-2t)/t#

#dx/dt=(1-2t)/t#

Finally, divide #dy/dt# by #dx/dt#

#dy/dx=(-2*sint *cos t)/((1-2t)/t)#

#dy/dx=(-2t*sin t* cos t)/(1-2t)#

from Plane Trigonometry, #2*sin t* cos t = sin 2t#

#dy/dx=(-t*sin 2t)/(1-2t)#

placing the negative sign (-) at the bottom so that the final answer becomes:

#dy/dx=(t*sin 2t)/(2t-1)#

I hope the explanation helps ...