How do you differentiate #y= sqrt(1+x^2)#?
1 Answer
Jun 17, 2016
Explanation:
Rewrite y as
#y=sqrt(1+x^2)=(1+x^2)^(1/2)# differentiate using the
#color(blue)"chain rule"#
#d/dx(f(g(x)))=f'(g(x)).g'(x)....................(A)#
#"--------------------------------------------------------"#
#f(g(x))=(1+x^2)^(1/2)rArrf'(g(x))=1/2(1+x^2)^(-1/2)#
Substitute these values in (A)
#1/2(1+x^2)^(-1/2).2x=x(1+x^2)^(-1/2)#
#rArrdy/dx=x/(1+x^2)^(1/2)=x/(sqrt(1+x^2)#