How do you differentiate #y=x^2ln(2x)+xln(3x)+4lnx#?
1 Answer
May 4, 2017
Explanation:
Use the product and chain rules.
Developing a formula for the derivative of
By the chain rule, letting
#dy/dx= 1/u * a #
#dy/dx = a/(ax)#
#dy/dx = 1/x#
Apply the formula to the problem
#y' = 2xln(2x) + x^2(1/x) + ln(3x) + x(1/x) + 4/x#
#y' = 2xln(2x) + x + ln(3x) + 1 + 4/x#
#y' = (2x^2ln(2x) + x^2 + xln(3x) + x + 4)/x#
Hopefully this helps!