How do you differentiate #y=x^2ln(2x)+xln(3x)+4lnx#?

1 Answer
May 4, 2017

#y' = (2x^2ln(2x) + x^2 + xln(3x) + x + 4)/x#

Explanation:

Use the product and chain rules.

Developing a formula for the derivative of #ln(ax)#, where #a# is a constant

By the chain rule, letting #y = ln u# and #u =ax#. Then #du = a dx# and #dy = 1/u du#. We have:

#dy/dx= 1/u * a #

#dy/dx = a/(ax)#

#dy/dx = 1/x#

Apply the formula to the problem

#y' = 2xln(2x) + x^2(1/x) + ln(3x) + x(1/x) + 4/x#

#y' = 2xln(2x) + x + ln(3x) + 1 + 4/x#

#y' = (2x^2ln(2x) + x^2 + xln(3x) + x + 4)/x#

Hopefully this helps!